证明:(1)对于方程$x^{2}-(2m - 1)x - 3m^{2}+m = 0,$其中$a = 1,$$b = -(2m - 1),$$c = -3m^{2}+m,$
$\Delta=b^{2}-4ac=[-(2m - 1)]^{2}-4\times1\times(-3m^{2}+m)=4m^{2}-4m + 1 + 12m^{2}-4m=16m^{2}-8m + 1=(4m - 1)^{2}\geq0,$
所以无论$m$为何值,该方程总有实数根。
(2)由一元二次方程的根与系数的关系,得$x_{1}+x_{2}=2m - 1,$$x_{1}x_{2}=-3m^{2}+m。$
因为$\frac{x_{2}}{x_{1}}+\frac{x_{1}}{x_{2}}=-\frac{5}{2},$所以$\frac{x_{1}^{2}+x_{2}^{2}}{x_{1}x_{2}}=-\frac{5}{2},$即$\frac{(x_{1}+x_{2})^{2}-2x_{1}x_{2}}{x_{1}x_{2}}=-\frac{5}{2},$
所以$\frac{(x_{1}+x_{2})^{2}}{x_{1}x_{2}}=-\frac{1}{2},$则$\frac{(2m - 1)^{2}}{-3m^{2}+m}=-\frac{1}{2},$
$2(2m - 1)^{2}=3m^{2}-m,$
$2(4m^{2}-4m + 1)=3m^{2}-m,$
$8m^{2}-8m + 2 = 3m^{2}-m,$
$8m^{2}-3m^{2}-8m + m + 2 = 0,$
$5m^{2}-7m + 2 = 0,$
分解因式得$(5m - 2)(m - 1)=0,$
则$5m - 2 = 0$或$m - 1 = 0,$解得$m = 1$或$\frac{2}{5},$均符合题意。
故$m$的值为1或$\frac{2}{5}。$