$ (2)①$证明:∵$AB//CD,$∴$∠BAE=∠DCF$
∵$AF + AE = AC,$∴$AE = AC - AF = CF$
$ $在$\triangle ABE$和$\triangle CDF $中
$ \begin {cases}∠ABE=∠CDF \\∠BAE=∠DCF \\AE = CF\end {cases}$
∴$\triangle ABE≌\triangle CDF(\mathrm {AAS})$
②证明:∵$\triangle ABE≌\triangle CDF$
∴$∠AEB=∠CF D,$$BE = DF$
∴$∠BEC=∠DF A$
∵$AF + AE = AC,$$CE + AE = AC,$∴$AF = CE$
$ $在$\triangle BCE$和$\triangle DAF {中}$
$ \begin {cases}BE = DF \\∠BEC=∠DF A \\CE = AF\end {cases}$
∴$\triangle BCE≌\triangle DAF(S AS)$