证明:∵$\triangle ABC$是等边三角形,∴$AB = CB,$$∠ACB = 60°$
∵$BD$是$\triangle ABC$的中线,∴$BD\perp AC$
∴在$Rt\triangle BDC$中,$∠DBC = 30°$
根据画图痕迹,得$BD = DE,$∴$∠E=∠DBC = 30°$
∵$∠ACB$是$\triangle DCE$的外角,∴$∠ACB=∠CDE+∠E$
∴$∠CDE = 30°,$∴$∠E=∠CDE,$∴$CD = CE$