$ (1)$证明:∵$\triangle ABC,$$\triangle CDE$均为等边三角形
∴$AC = BC,$$CD = CE,$$∠ACB = ∠DCE = 60°$
∴$∠ACB + ∠BCE = ∠DCE + ∠BCE,$即$∠ACE = ∠BCD$
$ $在$\triangle ACE$和$\triangle BCD$中
$ \begin {cases}AC = BC\\∠ACE = ∠BCD\\CE = CD\end {cases}$
∴$\triangle ACE≌\triangle BCD(S AS),$∴$AE = BD$
$ (2)$解:∵$\triangle ACE≌ \triangle BCD,$∴$∠CAE = ∠CBD$
又∵$\triangle AP C$与$\triangle BPO$的内角和均为$180°,$$∠AP C = ∠BPO$
∴$∠BOP = ∠ACP = 60°,$即$∠AOB = 60°$