证明:
$\because AD = AE,$$BD = CE,$
$\therefore AD + BD = AE + CE,$即$AB = AC.$
在$\triangle ABE$和$\triangle ACD$中,
$\begin{cases}AB = AC,\\\angle A = \angle A,\\AE = AD,\end{cases}$
$\therefore \triangle ABE\cong\triangle ACD$(SAS).
$\therefore \angle B = \angle C$