电子课本网 第23页

第23页

信息发布者:
C
95°
8
(1)证明:
在$\triangle ABE$和$\triangle CBD$中,
$\begin{cases}AB = CB,\\\angle ABE = \angle CBD = 90^{\circ},\\BE = BD,\end{cases}$
$\therefore \triangle ABE\cong\triangle CBD$(SAS)
(2)解:
$\because AB = CB,$$\angle ABC = 90^{\circ},$
$\therefore \triangle ABC$是等腰直角三角形.
$\therefore \angle BAC = \angle ACB = 45^{\circ}.$
$\because \triangle ABE\cong\triangle CBD,$
$\therefore \angle AEB = \angle CDB.$
$\because \angle AEB$为$\triangle AEC$的外角,
$\therefore \angle AEB = \angle ACB + \angle CAE = 45^{\circ} + 30^{\circ} = 75^{\circ}.$
$\therefore \angle CDB = 75^{\circ}$
(1)证明:
$\because \angle AOB = \angle COD = 90^{\circ},$
$\therefore \angle COD + \angle AOC = \angle AOB + \angle AOC,$即$\angle AOD = \angle BOC.$
在$\triangle AOD$和$\triangle BOC$中,
$\begin{cases}OA = OB,\\\angle AOD = \angle BOC,\\OD = OC,\end{cases}$
$\therefore \triangle AOD\cong\triangle BOC$(SAS)
(2)解:
由(1),知$\triangle AOD\cong\triangle BOC,$
$\therefore \angle A = \angle B.$
设$OA,$$BC$交于点$F.$
$\because \angle AOB = 90^{\circ},$
$\therefore \angle B + \angle OFB = 90^{\circ}.$
又$\because \angle OFB = \angle AFE,$
$\therefore \angle A + \angle AFE = 90^{\circ}.$
$\therefore \angle AEB = 90^{\circ}$
证明:
$\because \angle ACB = 90^{\circ},$$CF\perp AE,$
$\therefore \angle ACF + \angle CAE = \angle ACF + \angle BCD = 90^{\circ}.$
$\therefore \angle CAE = \angle BCD.$
在$\triangle ACE$和$\triangle CBD$中,
$\begin{cases}AC = CB,\\\angle CAE = \angle BCD,\\AE = CD,\end{cases}$
$\therefore \triangle ACE\cong\triangle CBD$(SAS).
$\therefore \angle CBD = \angle ACE = 90^{\circ},$即$BD\perp BC$