(1)证明:
$\because \angle AOB = \angle COD = 90^{\circ},$
$\therefore \angle COD + \angle AOC = \angle AOB + \angle AOC,$即$\angle AOD = \angle BOC.$
在$\triangle AOD$和$\triangle BOC$中,
$\begin{cases}OA = OB,\\\angle AOD = \angle BOC,\\OD = OC,\end{cases}$
$\therefore \triangle AOD\cong\triangle BOC$(SAS)
(2)解:
由(1),知$\triangle AOD\cong\triangle BOC,$
$\therefore \angle A = \angle B.$
设$OA,$$BC$交于点$F.$
$\because \angle AOB = 90^{\circ},$
$\therefore \angle B + \angle OFB = 90^{\circ}.$
又$\because \angle OFB = \angle AFE,$
$\therefore \angle A + \angle AFE = 90^{\circ}.$
$\therefore \angle AEB = 90^{\circ}$