(1)证明:因为$AD$是$\triangle ABC$的中线,所以$BD = CD。$
因为$BE\perp AD,$$CF\perp AD,$所以$\angle BED=\angle F = 90^{\circ}。$
在$\triangle BED$和$\triangle CFD$中,
$\begin{cases}\angle BED=\angle F\\\angle BDE=\angle CDF\\BD = CD\end{cases},$
所以$\triangle BED\cong\triangle CFD(AAS)。$
所以$BE = CF。$
(2)证明:在$Rt\triangle BGE$和$Rt\triangle CAF$中,
$\begin{cases}BG = CA\\BE = CF\end{cases},$
所以$Rt\triangle BGE\cong Rt\triangle CAF(HL)。$
所以$GE = AF。$
所以$GE - AE=AF - AE,$即$AG = EF。$
因为$\triangle BED\cong\triangle CFD,$所以$DE = DF。$
因为$EF = DE + DF = 2DE,$所以$AG = 2DE。$