解:如图,延长$DC$至点$M,$使$CM = AE,$连接$BM,$$BD。$
在$\triangle ABE$和$\triangle CBM$中,
$\begin{cases}AE = CM \\ \angle A=\angle BCM = 90^{\circ} \\ AB = CB\end{cases},$
所以$\triangle ABE\cong\triangle CBM。$(SAS)
所以$BE = BM,$$\angle ABE=\angle CBM。$
因为$\angle ADF = 60^{\circ},$$\angle A=\angle BCF = 90^{\circ},$
所以$\angle ABC=\angle ABD+\angle CBD=180^{\circ}-90^{\circ}-\angle BDA + 180^{\circ}-90^{\circ}-\angle BDC=180^{\circ}-\angle ADF = 120^{\circ}。$
因为$\angle EBF = 60^{\circ},$
所以$\angle ABE+\angle CBF=\angle ABC-\angle EBF=120^{\circ}-60^{\circ}=60^{\circ}。$
所以$\angle MBF=\angle MBC+\angle CBF=\angle ABE+\angle CBF = 60^{\circ},$
即$\angle EBF=\angle MBF。$
在$\triangle BMF$和$\triangle BEF$中,
$\begin{cases}BM = BE \\ \angle MBF=\angle EBF \\ BF = BF\end{cases},$
所以$\triangle BMF\cong\triangle BEF。$(SAS)
所以$MF = EF。$
又因为$MF = MC + CF,$$CM = AE,$所以$EF = AE + CF。$