证明:$\because AD$平分$\angle BAC,$$DE\perp AB,$$DF\perp AC,$
$\therefore DE = DF,$$\angle BED=\angle CFD = 90^{\circ}。$
在$\triangle BED$和$\triangle CFD$中,
$\begin{cases}BE = CF\\\angle BED=\angle CFD\\DE = DF\end{cases},$
$\therefore \triangle BED\cong\triangle CFD(SAS)。$
$\therefore BD = CD,$即$D$是$BC$的中点