(1)证明:$\because AD$平分$\angle BAC,$$DE\perp AB,$$DF\perp AC,$$\therefore DE = DF,$$\angle BED=\angle F = 90^{\circ}。$
在$Rt\triangle BDE$和$Rt\triangle CDF$中,
$\begin{cases}BD = CD\\DE = DF\end{cases},$
$\therefore Rt\triangle BDE\cong Rt\triangle CDF(HL)$
(2)解:在$Rt\triangle ADE$和$Rt\triangle ADF$中,
$\begin{cases}AD = AD\\DE = DF\end{cases},$
$\therefore Rt\triangle ADE\cong Rt\triangle ADF(HL)。$
$\therefore AE = AF。$$\because AE = 6cm,$$\therefore AF = 6cm。$
$\because AC = 4cm,$$\therefore CF = AF - AC=6 - 4 = 2cm。$
由(1),可知$Rt\triangle BDE\cong Rt\triangle CDF,$
$\therefore BE = CF。$$\therefore BE = 2cm$