电子课本网 第35页

第35页

信息发布者:
$\frac{2}{3}$
4
证明:如图,过点$O$作$OE\perp AB$于点$E。$

$\because\angle C = 90^{\circ},$即$OC\perp AC,$$AO$平分$\angle CAB,$
$\therefore OC = OE。$同理,可得$OD = OE,$
$\therefore OC = OD$
证明:$\because BD$平分$\angle ABC,$$\therefore\angle ABE=\angle CBE。$
在$\triangle ABE$和$\triangle CBE$中,
$\begin{cases}AB = CB\\\angle ABE=\angle CBE\\BE = BE\end{cases},$
$\therefore\triangle ABE\cong\triangle CBE(SAS)。$
$\therefore\angle AEB=\angle CEB。$$\therefore\angle AED=\angle CED,$即$ED$平分$\angle AEC。$
又$\because DF\perp AE,$$DG\perp CE,$
$\therefore DF = DG$
$\triangle CDF$
(1)证明:$\because AD$平分$\angle BAC,$$DE\perp AB,$$DF\perp AC,$$\therefore DE = DF,$$\angle BED=\angle F = 90^{\circ}。$
在$Rt\triangle BDE$和$Rt\triangle CDF$中,
$\begin{cases}BD = CD\\DE = DF\end{cases},$
$\therefore Rt\triangle BDE\cong Rt\triangle CDF(HL)$
(2)解:在$Rt\triangle ADE$和$Rt\triangle ADF$中,
$\begin{cases}AD = AD\\DE = DF\end{cases},$
$\therefore Rt\triangle ADE\cong Rt\triangle ADF(HL)。$
$\therefore AE = AF。$$\because AE = 6cm,$$\therefore AF = 6cm。$
$\because AC = 4cm,$$\therefore CF = AF - AC=6 - 4 = 2cm。$
由(1),可知$Rt\triangle BDE\cong Rt\triangle CDF,$
$\therefore BE = CF。$$\therefore BE = 2cm$