电子课本网 第36页

第36页

信息发布者:
D
D
$128^{\circ}$
解:$\because BF\perp AC,$$CE\perp AB,$$\therefore \angle BED = \angle CFD = 90^{\circ}.$
在$\triangle BDE$和$\triangle CDF$中,
$\begin{cases}\angle BED=\angle CFD,\\\angle BDE=\angle CDF,\\BD = CD,\end{cases}$
$\therefore \triangle BDE\cong\triangle CDF(\text{AAS}),$$\therefore DE = DF.$
又$\because BF\perp AC,$$CE\perp AB,$
$\therefore$点$D$在$\angle BAC$的平分线上.
解:(1) 证明:$\because PR\perp AB,$$PS\perp AC,$$PR = PS,$
$\therefore AP$平分$\angle BAC,$$\therefore \angle BAP = \angle CAP.$
又$\because \angle CAP = \angle APQ,$$\therefore \angle BAP = \angle APQ,$
$\therefore QP// AR.$
(2) 相等. 理由:
$\because PR\perp AB,$$PS\perp AC,$$\therefore \angle ARP = \angle ASP = 90^{\circ}.$
在$\text{Rt}\triangle APR$和$\text{Rt}\triangle APS$中,
$\begin{cases}AP = AP,\\PR = PS,\end{cases}$
$\therefore \text{Rt}\triangle APR\cong\text{Rt}\triangle APS(\text{HL}),$
$\therefore AR = AS.$
C