解:(1) 证明:$\because PR\perp AB,$$PS\perp AC,$$PR = PS,$
$\therefore AP$平分$\angle BAC,$$\therefore \angle BAP = \angle CAP.$
又$\because \angle CAP = \angle APQ,$$\therefore \angle BAP = \angle APQ,$
$\therefore QP// AR.$
(2) 相等. 理由:
$\because PR\perp AB,$$PS\perp AC,$$\therefore \angle ARP = \angle ASP = 90^{\circ}.$
在$\text{Rt}\triangle APR$和$\text{Rt}\triangle APS$中,
$\begin{cases}AP = AP,\\PR = PS,\end{cases}$
$\therefore \text{Rt}\triangle APR\cong\text{Rt}\triangle APS(\text{HL}),$
$\therefore AR = AS.$