解:(1) $\because EF\perp AB,$$\angle AEF = 50^{\circ},$
$\therefore \angle FAE = 90^{\circ}-50^{\circ}=40^{\circ}.$
$\because \angle BAD = 100^{\circ},$
$\therefore \angle CAD = 180^{\circ}-100^{\circ}-40^{\circ}=40^{\circ}.$
(2) 过点$E$作$EG\perp AD$于点$G,$$EH\perp BC$于点$H.$
$\because \angle FAE = \angle DAE = 40^{\circ},$$EF\perp BF,$$EG\perp AD,$
$\therefore EF = EG.$
$\because BE$平分$\angle ABC,$$EF\perp BF,$$EH\perp BC,$
$\therefore EF = EH,$$\therefore EH = EG.$
$\because EG\perp AD,$$EH\perp BC,$
$\therefore DE$平分$\angle ADC.$
(3) $\because S_{\triangle ACD}=15,$
$\therefore \frac{1}{2}AD\cdot EG+\frac{1}{2}CD\cdot EH = 15,$
即$\frac{1}{2}\times4\times EG+\frac{1}{2}\times8\times EG = 15.$
$\therefore EG = EH=\frac{5}{2},$$\therefore EF = EH=\frac{5}{2}.$
$\therefore S_{\triangle ABE}=\frac{1}{2}AB\cdot EF=\frac{1}{2}\times7\times\frac{5}{2}=\frac{35}{4}.$