电子课本网 第37页

第37页

信息发布者:
$3$
$6:5:3$
证明:$\because PB\perp AB,$$PC\perp AC,$$PB = PC,$
$\therefore AP$平分$\angle BAC,$即$\angle BAP = \angle CAP.$
$\because \angle BAP + \angle BPA = 90^{\circ},$$\angle CAP + \angle CPA = 90^{\circ},$
$\therefore \angle BPA = \angle CPA.$
在$\triangle PBD$和$\triangle PCD$中,
$\begin{cases}PB = PC,\\\angle BPD = \angle CPD,\\PD = PD,\end{cases}$
$\therefore \triangle PBD\cong\triangle PCD(\text{SAS}),$
$\therefore \angle BDP = \angle CDP.$
(1) 证明:如图,过点$P$作$PF\perp BE$于点$F,$$PN\perp BD$于点$N,$
$PM\perp AC$于点$M.$

$\because CP$平分$\angle ACD,$$\therefore PM = PN.$
$\because BP$平分$\angle ABC,$$\therefore PF = PN,$
$\therefore PF = PM.$
又$\because PF\perp AE,$$PM\perp AC,$
$\therefore AP$平分$\angle CAE.$
(2) 设$\angle ACP = \angle PCD = x.$ 由
(1)知$AP$平分$\angle CAE,$$\therefore \angle FAP = \angle PAC.$
$\because \angle BPC = 40^{\circ},$$\therefore \angle ABP = \angle PBC = x - 40^{\circ}.$
$\therefore \angle BAC = \angle ACD - \angle ABC = 2x-(x - 40^{\circ})-(x - 40^{\circ}) = 80^{\circ}.$
$\therefore \angle CAF = 180^{\circ}-\angle BAC = 100^{\circ},$$\therefore \angle CAP=\frac{1}{2}\angle CAF = 50^{\circ}.$
解:(1) $\because EF\perp AB,$$\angle AEF = 50^{\circ},$
$\therefore \angle FAE = 90^{\circ}-50^{\circ}=40^{\circ}.$
$\because \angle BAD = 100^{\circ},$
$\therefore \angle CAD = 180^{\circ}-100^{\circ}-40^{\circ}=40^{\circ}.$
(2) 过点$E$作$EG\perp AD$于点$G,$$EH\perp BC$于点$H.$

$\because \angle FAE = \angle DAE = 40^{\circ},$$EF\perp BF,$$EG\perp AD,$
$\therefore EF = EG.$
$\because BE$平分$\angle ABC,$$EF\perp BF,$$EH\perp BC,$
$\therefore EF = EH,$$\therefore EH = EG.$
$\because EG\perp AD,$$EH\perp BC,$
$\therefore DE$平分$\angle ADC.$
(3) $\because S_{\triangle ACD}=15,$
$\therefore \frac{1}{2}AD\cdot EG+\frac{1}{2}CD\cdot EH = 15,$
即$\frac{1}{2}\times4\times EG+\frac{1}{2}\times8\times EG = 15.$
$\therefore EG = EH=\frac{5}{2},$$\therefore EF = EH=\frac{5}{2}.$
$\therefore S_{\triangle ABE}=\frac{1}{2}AB\cdot EF=\frac{1}{2}\times7\times\frac{5}{2}=\frac{35}{4}.$