(1)证明:$\because AB = AC,$$\angle BAC = 36^{\circ},$
$\therefore \angle ABC = \angle ACB = \frac{1}{2}(180^{\circ}-\angle BAC)=72^{\circ}.$
$\because BD$是$\angle ABC$的平分线,
$\therefore \angle ABD=\frac{1}{2}\angle ABC = 36^{\circ}.$
$\therefore \angle BAD=\angle ABD.$ $\therefore AD = BD.$
又$\because E$是$AB$的中点,$\therefore DE\perp AB,$即$EF\perp AB$
(2)证明:$\because EF\perp AB,$$E$是$AB$的中点,
$\therefore EF$垂直平分$AB.$ $\therefore AF = BF.$
$\therefore \angle BAF = \angle ABF.$ 由(1),知$\angle ABD = \angle BAD = 36^{\circ},$
$\therefore$易得$\angle FAD=\angle FBD = 72^{\circ}-36^{\circ}=36^{\circ}.$
又$\because \angle ACB = 72^{\circ},$
$\therefore \angle AFC = \angle ACB-\angle CAF = 36^{\circ}.$
$\therefore \angle CAF=\angle AFC = 36^{\circ}.$
$\therefore AC = CF,$即$\triangle ACF$为等腰三角形