电子课本网 第57页

第57页

信息发布者:
$82^{\circ}$
①②③⑤
(1)证明:
$\because BF = AC,$$AB = AE,$
$\therefore BF + AB = AC + AE,$即$FA = EC.$
$\because \triangle DEF$是等边三角形,
$\therefore EF = DE.$
在$\triangle AEF$和$\triangle CDE$中,
$\begin{cases}AE = CD\\FA = EC\\EF = DE\end{cases},$
$\therefore \triangle AEF\cong\triangle CDE(SSS).$
(2)证明:
由(1),得$\triangle AEF\cong\triangle CDE,$
$\therefore \angle FEA=\angle EDC.$
$\because \angle BCA=\angle EDC+\angle DEC,$$\triangle DEF$是等边三角形,
$\therefore \angle BCA=\angle FEA+\angle DEC=\angle DEF = 60^{\circ}.$
同理,可得$\angle BAC = 60^{\circ}.$
$\therefore \angle ABC=\angle BAC=\angle BCA = 60^{\circ}.$
$\therefore \triangle ABC$是等边三角形.
(1)解:
$\because AP = AQ,$
$\therefore \angle APQ=\angle AQP.$
$\therefore \angle APB=\angle AQC.$
在$\triangle APB$和$\triangle AQC$中,
$\begin{cases}AP = AQ\\\angle APB=\angle AQC\\BP = CQ\end{cases},$
$\therefore \triangle APB\cong\triangle AQC(SAS).$
$\therefore AB = AC.$
$\therefore \angle B=\angle C = 25^{\circ}.$
$\therefore \angle BAC=180^{\circ}-(\angle B+\angle C)=130^{\circ}.$
$\because AP = BP,$$AQ = CQ,$
$\therefore \angle BAP=\angle B = 25^{\circ},$$\angle CAQ=\angle C = 25^{\circ}.$
$\therefore \angle PAQ=\angle BAC-\angle BAP-\angle CAQ = 80^{\circ}.$
(2)解:
由(1),知$\angle B=\angle C.$
$\because \angle BAC = 120^{\circ},$
$\therefore \angle B=\angle C = 30^{\circ}.$
同(1),得$\angle BAP=\angle CAQ=\angle B=\angle C = 30^{\circ},$
$\therefore$易得$\angle PAQ = 60^{\circ}.$
又$\because AP = AQ,$
$\therefore \triangle APQ$是等边三角形.
(1)证明:
如图①,在$AC$上截取$CM = CD,$连接$DM.$
$\because \triangle ABC$是等边三角形,
$\therefore \angle ACB = 60^{\circ}.$
$\therefore \triangle CDM$是等边三角形.
$\therefore MD = CD = CM,$$\angle CMD=\angle CDM = 60^{\circ}.$
$\therefore \angle AMD=180^{\circ}-\angle CMD = 120^{\circ}.$
$\because \angle ADE = 60^{\circ},$
$\therefore \angle ADE=\angle MDC.$
$\therefore \angle ADE-\angle MDE=\angle MDC-\angle MDE,$即$\angle ADM=\angle EDC.$
$\because DE$与$\angle ACB$的邻补角的平分线交于点$E,$
$\therefore$易得$\angle ACE = 60^{\circ}.$
$\therefore \angle ECD=\angle ACE+\angle ACB = 120^{\circ}=\angle AMD.$
在$\triangle ADM$和$\triangle EDC$中,
$\begin{cases}\angle ADM=\angle EDC\\MD = CD\\\angle AMD=\angle ECD\end{cases},$
$\therefore \triangle ADM\cong\triangle EDC(ASA).$
$\therefore AM = EC.$
$\therefore CA = CM + AM = CD + CE.$

(2)解:$CA = CE - CD.$
证明:如图②,延长$AC,$在$AC$的延长线上截取$CM = CD,$连接$DM.$
$\because \triangle ABC$是等边三角形,
$\therefore \angle ACB = 60^{\circ}.$
$\therefore \angle DCM=\angle ACB = 60^{\circ}.$
$\therefore \triangle CDM$是等边三角形.
$\therefore MD = CD = CM,$$\angle M=\angle CDM = 60^{\circ}.$
$\because DE$与$\angle ACB$的邻补角的平分线交于点$E,$
$\therefore$易得$\angle ACE=\angle ECD = 60^{\circ}.$
$\therefore \angle ECD=\angle M.$
$\because \angle ADE = 60^{\circ},$
$\therefore \angle ADE=\angle CDM.$
$\therefore \angle CDM+\angle ADC=\angle ADE+\angle ADC,$即$\angle ADM=\angle EDC.$
在$\triangle ADM$和$\triangle EDC$中,
$\begin{cases}\angle ADM=\angle EDC\\MD = CD\\\angle M=\angle ECD\end{cases},$
$\therefore \triangle ADM\cong\triangle EDC(ASA).$
$\therefore AM = EC.$
$\therefore CA = AM - CM = CE - CD.$