(1)证明:
如图①,在$AC$上截取$CM = CD,$连接$DM.$
$\because \triangle ABC$是等边三角形,
$\therefore \angle ACB = 60^{\circ}.$
$\therefore \triangle CDM$是等边三角形.
$\therefore MD = CD = CM,$$\angle CMD=\angle CDM = 60^{\circ}.$
$\therefore \angle AMD=180^{\circ}-\angle CMD = 120^{\circ}.$
$\because \angle ADE = 60^{\circ},$
$\therefore \angle ADE=\angle MDC.$
$\therefore \angle ADE-\angle MDE=\angle MDC-\angle MDE,$即$\angle ADM=\angle EDC.$
$\because DE$与$\angle ACB$的邻补角的平分线交于点$E,$
$\therefore$易得$\angle ACE = 60^{\circ}.$
$\therefore \angle ECD=\angle ACE+\angle ACB = 120^{\circ}=\angle AMD.$
在$\triangle ADM$和$\triangle EDC$中,
$\begin{cases}\angle ADM=\angle EDC\\MD = CD\\\angle AMD=\angle ECD\end{cases},$
$\therefore \triangle ADM\cong\triangle EDC(ASA).$
$\therefore AM = EC.$
$\therefore CA = CM + AM = CD + CE.$
(2)解:$CA = CE - CD.$
证明:如图②,延长$AC,$在$AC$的延长线上截取$CM = CD,$连接$DM.$
$\because \triangle ABC$是等边三角形,
$\therefore \angle ACB = 60^{\circ}.$
$\therefore \angle DCM=\angle ACB = 60^{\circ}.$
$\therefore \triangle CDM$是等边三角形.
$\therefore MD = CD = CM,$$\angle M=\angle CDM = 60^{\circ}.$
$\because DE$与$\angle ACB$的邻补角的平分线交于点$E,$
$\therefore$易得$\angle ACE=\angle ECD = 60^{\circ}.$
$\therefore \angle ECD=\angle M.$
$\because \angle ADE = 60^{\circ},$
$\therefore \angle ADE=\angle CDM.$
$\therefore \angle CDM+\angle ADC=\angle ADE+\angle ADC,$即$\angle ADM=\angle EDC.$
在$\triangle ADM$和$\triangle EDC$中,
$\begin{cases}\angle ADM=\angle EDC\\MD = CD\\\angle M=\angle ECD\end{cases},$
$\therefore \triangle ADM\cong\triangle EDC(ASA).$
$\therefore AM = EC.$
$\therefore CA = AM - CM = CE - CD.$