解:(1) 因为$AB = AC,$$\angle BAC = 120^{\circ},$
所以$\angle B=\angle C=\frac{1}{2}\times(180^{\circ}-\angle BAC)=30^{\circ}。$
因为$BD = BE,$所以$\angle BDE=\angle BED=\frac{1}{2}\times(180^{\circ}-\angle B)=75^{\circ}。$
因为$AB = AC,$$AD$是边$BC$上的中线,
所以$AD\perp BC,$$\angle ADB = 90^{\circ}。$
所以$\angle ADE=\angle ADB-\angle BDE = 15^{\circ}。$
(2) 因为$MF$垂直平分$CD,$所以$DF = CF。$
因为$\angle C = 30^{\circ},$所以$\angle FDC=\angle C = 30^{\circ},$
所以$\angle AFD=\angle C+\angle FDC = 60^{\circ}。$
由
(1)知$AD\perp BC,$所以$\angle ADC = 90^{\circ},$
所以$\angle DAF=90^{\circ}-\angle C = 60^{\circ}。$
所以$\angle DAF=\angle AFD=\angle ADF = 60^{\circ},$
所以$\triangle ADF$是等边三角形。
(3) 因为$MF$垂直平分$CD,$
所以$\angle FMC = 90^{\circ},$$DF = CF。$
因为$\angle C = 30^{\circ},$$MF = 2,$
在$Rt\triangle FMC$中,$CF = 2MF = 4,$所以$DF = CF = 4。$
因为$\triangle ADF$是等边三角形,所以$AF = DF = 4。$
因为$AC = AF + CF=8,$
又因为$AB = AC,$所以$AB = 8。$