(1)解:原式$=-(3 - 1)\times(3 + 1)\times(3^{2}+1)\times(3^{4}+1)\times(3^{8}+1)\times(3^{16}+1)\times(3^{32}+1)-1$
$=-(3^{2}-1)\times(3^{2}+1)\times(3^{4}+1)\times(3^{8}+1)\times(3^{16}+1)\times(3^{32}+1)-1$
$=-(3^{4}-1)\times(3^{4}+1)\times(3^{8}+1)\times(3^{16}+1)\times(3^{32}+1)-1$
$=-(3^{8}-1)\times(3^{8}+1)\times(3^{16}+1)\times(3^{32}+1)-1$
$=-(3^{16}-1)\times(3^{16}+1)\times(3^{32}+1)-1$
$=-(3^{32}-1)\times(3^{32}+1)-1$
$=-(3^{64}-1)-1=-3^{64}$
(2)解:因为$3^{1}=3,$个位数字是$3;$$3^{2}=9,$个位数字是$9;$$3^{3}=27,$个位数字是$7;$$3^{4}=81,$个位数字是$1;$$3^{5}=243,$个位数字是$3,$$\cdots,$个位数字以$3$、$9$、$7$、$1$为循环节循环,$64\div4 = 16,$所以$3^{64}$的个位数字是$1,$则$-3^{64}$的个位数字是$1。$