电子课本网 第86页

第86页

信息发布者:
D
2
解:
$\begin{aligned}&105×95 - 203×197\\=&(100 + 5)×(100 - 5) - (200 + 3)×(200 - 3)\\=&100^{2}-5^{2}-(200^{2}-3^{2})\\=&10000 - 25-(40000 - 9)\\=&10000 - 25 - 40000 + 9\\=&(10000 - 40000)+(9 - 25)\\=& - 30000 - 16\\=& - 30016\end{aligned}$
解:
$\begin{aligned}&\frac{312^{2}}{-1 - 313×311}\\=&\frac{312^{2}}{-1-(312 + 1)×(312 - 1)}\\=&\frac{312^{2}}{-1-(312^{2}-1)}\\=&\frac{312^{2}}{-1 - 312^{2}+1}\\=&\frac{312^{2}}{-312^{2}}\\=& - 1\end{aligned}$
D
A
4
2
解:(1)$S$的值与$a$的大小无关
理由:由题意,得$S = a^{2}+b^{2}-\frac{1}{2}(a + b)\cdot a-\frac{1}{2}(a - b)\cdot a-\frac{1}{2}b^{2}=\frac{1}{2}b^{2},$$\therefore S$的值与$a$的大小无关.
(2)$\because a + b = 10,$$ab = 21,$
$\therefore S=\frac{1}{2}a^{2}+b^{2}-\frac{1}{2}(a + b)\cdot b=\frac{1}{2}a^{2}+\frac{1}{2}b^{2}-\frac{1}{2}ab=\frac{1}{2}(a + b)^{2}-\frac{3}{2}ab=\frac{1}{2}\times10^{2}-\frac{3}{2}\times21 = 50 - 31.5 = 18.5$
(3)$\because S=\frac{1}{2}(a - b)\cdot a+\frac{1}{2}(a - b)\cdot b=\frac{1}{2}(a - b)(a + b),$
$\therefore S^{2}=\frac{1}{4}(a - b)^{2}(a + b)^{2}.$
$\because a - b = 2,$$\therefore (a - b)^{2}=a^{2}-2ab + b^{2}=4.$
$\because a^{2}+b^{2}=7,$$\therefore 2ab = 3.$
$\therefore (a + b)^{2}=a^{2}+2ab + b^{2}=10.$
$\therefore S^{2}=\frac{1}{4}\times4\times10 = 10$