解:
$\begin{aligned}&\frac{3x + 6}{x + 1}-\frac{x - 1}{x}\div\frac{x^{2}-1}{x^{2}+2x}\\=&\frac{3x + 6}{x + 1}-\frac{x - 1}{x}\cdot\frac{x(x + 2)}{(x + 1)(x - 1)}\\=&\frac{3x + 6}{x + 1}-\frac{x + 2}{x + 1}\\=&\frac{3x + 6-(x + 2)}{x + 1}\\=&\frac{3x + 6 - x - 2}{x + 1}\\=&\frac{2x + 4}{x + 1}\\=&\frac{2(x + 1)+2}{x + 1}\\=&2+\frac{2}{x + 1}\end{aligned}$
因为当$x + 1=\pm1$或$x + 1=\pm2$时,分式的值为整数,
当$x + 1 = 1$时,$x = 0;$当$x + 1=-1$时,$x=-2;$当$x + 1 = 2$时,$x = 1;$当$x + 1=-2$时,$x=-3。$
又因为根据分式有意义的条件,$x\neq0,$$1,$$-1,$$-2,$所以$x=-3。$