解:
(1)
因为$a + a^{-1} = 3,$两边平方得$(a + a^{-1})^{2} = 3^{2},$即$a^{2} + 2 + a^{-2} = 9,$所以$a^{2} + a^{-2} = 7。$
$(a - a^{-1})^{2} = a^{2} - 2 + a^{-2} = 7 - 2 = 5,$所以$a - a^{-1} = \pm\sqrt{5}。$
(2)
由$a^{2} - 3a + 1 = 0,$可知$a \neq 0,$在该等式两边都除以$a,$可变形为$a - 3 + a^{-1} = 0,$即$a + a^{-1} = 3。$
$(a - a^{-1})^{2} = a^{2} - 2 + a^{-2}=(a + a^{-1})^{2}-4 = 3^{2}-4 = 5,$所以$a - a^{-1} = \pm\sqrt{5}。$