电子课本网 第120页

第120页

信息发布者:
D
$\frac{1}{a^{6}b^{2}}$

$-\frac{1}{27}m^{-6}n^{6} \cdot \frac{1}{4}m^{6}n^{-8}=-\frac{1}{108n^{2}}$
解:
$\begin{aligned}&(x^{2}y^{-3}c)^{-2} \cdot (x^{-1}y^{-2})^{3}\\=&x^{-4}y^{6}c^{-2} \cdot x^{-3}y^{-6}\\=&x^{-4 - 3}y^{6 - 6}c^{-2}\\=&\frac{1}{x^{7}c^{2}}\end{aligned}$
解:
$\begin{aligned}&4ab^{2} \div (-2a^{-2}b)^{3}\\=&4ab^{2} \div (-8a^{-6}b^{3})\\=&-\frac{4}{8}a^{1 - (-6)}b^{2 - 3}\\=&-\frac{a^{7}}{2b}\end{aligned}$
D
$\frac{ab}{a + b}$
$-6\frac{8}{9}$
解:
$\begin{aligned}&(2m^{2}n^{-1})^{2} \div 3m^{3}n^{-5}\\=&4m^{4}n^{-2} \div 3m^{3}n^{-5}\\=&\frac{4}{3}m^{4 - 3}n^{-2 - (-5)}\\=&\frac{4}{3}mn^{3}\end{aligned}$
解:
$\begin{aligned}&(-2a^{-2})^{3} \cdot b \div 2a^{-5}b^{-2}\\=&(-8a^{-6}) \cdot b \div 2a^{-5}b^{-2}\\=&(-8 \div 2)a^{-6 - (-5)}b^{1 - (-2)}\\=&-4a^{-1}b^{3}\\=&-\frac{4b^{3}}{a}\end{aligned}$
解:
(1)
因为$a + a^{-1} = 3,$两边平方得$(a + a^{-1})^{2} = 3^{2},$即$a^{2} + 2 + a^{-2} = 9,$所以$a^{2} + a^{-2} = 7。$
$(a - a^{-1})^{2} = a^{2} - 2 + a^{-2} = 7 - 2 = 5,$所以$a - a^{-1} = \pm\sqrt{5}。$
(2)
由$a^{2} - 3a + 1 = 0,$可知$a \neq 0,$在该等式两边都除以$a,$可变形为$a - 3 + a^{-1} = 0,$即$a + a^{-1} = 3。$
$(a - a^{-1})^{2} = a^{2} - 2 + a^{-2}=(a + a^{-1})^{2}-4 = 3^{2}-4 = 5,$所以$a - a^{-1} = \pm\sqrt{5}。$