解:先化简$y$:
$\begin{aligned}y&=\frac{x}{x^{2}-x}\div\frac{x^{2}-1}{x^{2}-2x + 1}-\frac{2}{x + 1}\\&=\frac{x}{x(x - 1)}\div\frac{(x + 1)(x - 1)}{(x - 1)^{2}}-\frac{2}{x + 1}\\&=\frac{x}{x(x - 1)}\times\frac{(x - 1)^{2}}{(x + 1)(x - 1)}-\frac{2}{x + 1}\\&=\frac{1}{x + 1}-\frac{2}{x + 1}\\&=-\frac{1}{x + 1}\end{aligned}$
由题意,得$-\frac{1}{x + 1}=\frac{1}{3}$
解得$x=-4$
检验:当$x=-4$时,$x + 1=-4 + 1=-3\neq0$
所以当$x=-4$时,$y$的值为$\frac{1}{3}。$