电子课本网 第28页

第28页

信息发布者:
$解:∵ \sqrt{a-2024}有意义$
$∴a-2024≥0,解得a≥2024,则|2023-a|=a-2023$
$故|2023-a|+ \sqrt{a-2024}=a可化简为a-2023+ \sqrt{a-2024}=a$
$则 \sqrt{a-2024}=2023,解得a=2023^2+2024$
$∴a-2023^2=2024$
(更多请查看作业精灵详解)
$解:(2)∵-(a-3)^2≥0$
$∴a=3$
$∴b=4$
$∵c的平方根等于它本身$
$∴c=0$
$∴a+ \sqrt{b-c} =3+ \sqrt{4} =5$
(更多请查看作业精灵详解)
$解:∵ \sqrt{2y+z}+|x-y|+z^2-z+\frac{1}{4}=0$
$∴\sqrt{2y+z}+|x-y|+(z-\frac{1}{2})^2=0$
$又∵ \sqrt{2y+z}≥0,|x-y|≥ 0,(z-\frac{1}{2})^2≥0$
$∴2y+z=0,x-y=0,z-\frac{1}{2}=0$
$解得x=-\frac{1}{4},y=-\frac{1}{4},z=\frac{1}{2}$
$则2x-y+z=2×(-\frac{1}{4})-(-\frac{1}{4})+\frac{1}{2}=\frac{1}{4}$
$所以2x-y+z的算术平方根是\frac{1}{2}$
$解:∵x^2+3x+1=0$
$∴x≠0$
$∴x+3+\frac{1}{x}=0$
$∴x+\frac{1}{x}=-3$
$ 解:原式= \sqrt{x^2-2x+1+2+\frac{1}{(x-1)^2}}-\frac{4}{x-1}$
$ ~~~~~~~~~~~~~~~~~= \sqrt{[(x-1)+\frac{1}{x-1}]^2}-\frac{4}{x-1} $
$ ~~~~~~~~~~~~~~~~~=|(x-1)+\frac{1}{x-1}|-\frac{4}{x-1} $
$∵x+\frac{1}{x}=-3$
$∴x<0$
$∴x-1<0,\frac{1}{x-1}<0$
$ ∴原式=1-x+\frac{1}{1-x}+\frac{4}{1-x} $
$ ~~~~~~~~~~~~~~~~~=1-x+\frac{5}{1-x} $
$ ~~~~~~~~~~~~~~~~~=\frac{(1-x)^2+5}{1-x} $
$ ~~~~~~~~~~~~~~~~~=\frac{1-2x+x^2+5}{1-x} $
$∵x^2+3x+1=0$
$∴x^2=-3x-1$
$ \begin{aligned} ∴原式&=\frac{1-2x-3x-1+5}{1-x} \\ &=\frac{5-5x}{1-x} \\ &=5 \\ \end{aligned}$