$解:(2)由A(8,0),C(0,6)$
$结合题意知B(8,6)$
$∵点P 在直线MN上$
$∴设P(a,-\frac {3}{4}a+6)$
$当以P,B,C三点为顶点的三角形$
$是等腰三角形时$
$需要分类讨论(如图)$
$①当PC=PB时,点P 是线段BC的垂直$
$平分线与直线MN的交点$
$则P_{1}(4,3)$
$②当PC= BC时,a² +(-\frac {3}{4}a+6-6)²=64$
$解得a=±\frac {32}{5}$
$则P_{2}(-\frac {32}{5},\frac {54}{5}),P_{3}(\frac {32}{5},\frac {6}{5})$
$③当PB= BC时,$
$(a-8)²+ (\frac {3}{4}a-6+6)²=64$
$解得a=\frac {256}{25}$
$则-\frac {3}{4}a+6=-\frac {42}{25}$
$则P_{4}(\frac {256}{25},-\frac {42}{25})$
$综上,符合条件的点P的坐标为$
$(4,3)或(-\frac {32}{5},\frac {54}{5}),(\frac {32}{5},\frac {6}{5})或(\frac {256}{25},-\frac {42}{25})$