$11.解:连接AO并延长交BC于E$
$连接OC,则OB=OC$
$又∵AB=AC$
$∴直线AO垂直平分BC$
$设OE=x,则AE=OA+OE=x+\sqrt{5}$
$在Rt△OBE中$
$BE^{2}=OB^{2}-OE^{2}$
$=(\sqrt{5})^{2}-x^{2}=5-x^{2}$
$在Rt△ABE中$
$BE^{2}=AB^{2}-AE^{2}$
$=4^{2}-(x+\sqrt{5})^{2}$
$∴5-x^{2}=4^{2}-(x+\sqrt{5})^{2}$
$=16-(x^{2}+2\sqrt{5}x+5)$
$=16-x^{2}-2\sqrt{5}x-5$
$2\sqrt{5}x=6$
$x=\frac{3}{5}\sqrt{5}$
$BE^{2}=5-(\frac35\sqrt{5})^{2}$
$=5-\frac95$
$=\frac{16}{5}$
$BE=\frac45\sqrt{5}(负值舍去)$
$BC=2BE=2×\frac45\sqrt{5}=\frac85\sqrt{5}$
$∵BD是直径$
$∴BD=2\sqrt{5}$
$∠BAD=∠BCD=90°$
$∴AD=\sqrt{BD^{2}-AB^{2}}$
$=\sqrt{(2\sqrt{5})^{2}-4^{2}}$
$=\sqrt{4}$
$=2$
$CD=\sqrt{BD^{2}-BC^{2}}$
$=\sqrt{(2\sqrt{5})^{2}-(\frac85\sqrt{5})^{2}}$
$=\frac65\sqrt{5}$
$∴S_{四边形ABCD}=S_{△BAD}+S_{△BCD}$
$=\frac12AB\cdot AD+\frac12BC\cdot CD$
$=\frac12×4×2+\frac12×\frac85\sqrt{5}×\frac65\sqrt{5}$
$=4+\frac{24}{5}$
$=8.8$