$解:题图①中,\ $
$因为 \angle C=90^{\circ}, A B=13, A C=12,$
$所以 B C=\sqrt{A B^2-A C^2}=5,$
$所以 \sin A=\frac {B C}{A B}=\frac {5}{13}, cos A=\frac {A C}{A B}=\frac {12}{13},\ $
$tan A=\frac {B C}{A C}=\frac {5}{12},$
$sin B=\frac {A C}{A B}=\frac {12}{13},\ $
$cos B=\frac {B C}{A B}=\frac {5}{13},\ $
$tan B=\frac {A C}{B C}=\frac {12}{5}.$
$题图②中,$
$因为 \angle C=90^{\circ}, A C=2, B C=3,$
$所以 A B=\sqrt{A C^2+B C^2}=\sqrt{13},$
$所以 \sin A=\frac {B C}{A B}=\frac {3 \sqrt{13}}{13},\ $
$cos A=\frac {A C}{A B}=\frac {2 \sqrt{13}}{13},$
$tan A=\frac {B C}{A C}=\frac {3}{2},$
$sin B=\frac {A C}{A B}=\frac {2 \sqrt{13}}{13},\ $
$cos B=\frac {B C}{A B}=\frac {3 \sqrt{13}}{13},\ $
$tan B=\frac {A C}{B C}=\frac {2}{3}$