$证明:(2)\because 四边形 A B C D 是矩形,$
$\therefore \angle D A B=90^{\circ}$
$\therefore \angle F A B=90^{\circ}$
$在 Rt \triangle A B F 中, \because A F=1, A B=2$
$\therefore 由勾股定理, 得 B F= \sqrt{A F^2+A B^2}=\sqrt{1^2+2^2}=\sqrt{5}$
$\therefore 四边形 B E D F 是平行四边 形$
$\therefore D F / / B E, D E=B F=\sqrt{5}$
$\therefore \angle D A E=\angle A E B$
$\because A D=\sqrt{5}$
$\therefore A D=D E$
$\therefore \angle D A E=\angle D E A$
$\therefore \angle A E B= \angle D E A , 即 E A 平分 \angle D E B$