$证明: (1) 由折叠, 得 \angle D A E=\angle D^{\prime}\ \mathrm {A}\ \mathrm {E} ,\ $
$\angle D E A=\angle D^{\prime}\ \mathrm {E}\ \mathrm {A},$
$\angle A D E=\angle A D^{\prime}\ \mathrm {E}=60^{\circ}$
$\because 四边形 A B C D 是平行四边形$
$\therefore A B=C D=2, A D=B C=1, A B / / C D$
$\therefore \angle D E A=\angle D^{\prime}\ \mathrm {A}\ \mathrm {E}$
$\therefore \angle D^{\prime}\ \mathrm {E}\ \mathrm {A}=\angle D^{\prime}\ \mathrm {A}\ \mathrm {E}$
$\therefore D^{\prime}\ \mathrm {E}=D^{\prime}\ \mathrm {A}$
$\because \angle A D^{\prime}\ \mathrm {E}=60^{\circ}$
$\therefore \triangle A D^{\prime}\ \mathrm {E} 是等边三角形$
$\therefore 易知 A D^{\prime}= E D^{\prime}=D E=A D=1$
$\therefore C E=D^{\prime}\ \mathrm {B}=1$
$又 \because B C=1$
$\therefore E D^{\prime}= D^{\prime}\ \mathrm {B}=B C=C E$
$\therefore 四边形 B C E D^{\prime} 是菱形$