电子课本网 第115页

第115页

信息发布者:

$解:​(1)\sqrt {5+\frac {5}{24}}=\sqrt {\frac {125}{24}}=5\sqrt {\frac {5}{24}}​$
$​(2)​猜想:​\sqrt {n+\frac n{n^2-1}}=n\sqrt {\frac n{n^2-1}}(n​为正整数)$
$证明:​\sqrt {n+\frac n{n^2-1}}=\sqrt {\frac {n^3}{n^2-1}}=n\sqrt {\frac n{n^2-1}},​等式成立$
$解:​\sqrt 3-\sqrt 2<\sqrt 2-1,​​\sqrt 4-\sqrt 3<\sqrt 3-\sqrt 2,​​\sqrt 5-\sqrt 4<\sqrt 4-\sqrt 3​$
$猜想:​\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}(n​是大于等于​1​的正整数)$
$证明:​\sqrt {n+1}-\sqrt {n}=\frac {(\sqrt {n+1}-\sqrt n)(\sqrt {n+1}+\sqrt n)}{\sqrt {n+1}+\sqrt n}=\frac 1{\sqrt {n+1}+\sqrt n}​$
$​\sqrt n-\sqrt {n-1}=\frac {(\sqrt n-\sqrt {n-1})(\sqrt n+\sqrt {n-1})}{\sqrt n+\sqrt {n-1}}=\frac 1{\sqrt n+\sqrt {n-1}}​$
$∵​\sqrt {n+1}+\sqrt n>\sqrt n+\sqrt {n-1}​$
$∴​\frac 1{\sqrt {n+1}+\sqrt n}<\frac 1{\sqrt n+\sqrt {n-1}}​$
$∴​\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}$
$解:当​a_{1}=1​时,​a_{2}=\frac 1{1+1}=\frac 12,​​a_{3}=\frac 1{1+2}=\frac 13···a_n=\frac 1{n}​$
$∴​a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{4}+···+a_{1999}a_{2000}​$
$​=1×\frac 12+\frac 12×\frac 13+\frac 13×\frac 14+···+\frac {1}{1999}×\frac {1}{2000}​$
$​=1-\frac 12+\frac 12-\frac 13+\frac 13-\frac 14+···+\frac {1}{1999}-\frac {1}{2000}​$
$​=1-\frac {1}{2000}​$
$​=\frac {1999}{2000}​$