$解:\sqrt 3-\sqrt 2<\sqrt 2-1,\sqrt 4-\sqrt 3<\sqrt 3-\sqrt 2,\sqrt 5-\sqrt 4<\sqrt 4-\sqrt 3$
$猜想:\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}(n是大于等于1的正整数)$
$证明:\sqrt {n+1}-\sqrt {n}=\frac {(\sqrt {n+1}-\sqrt n)(\sqrt {n+1}+\sqrt n)}{\sqrt {n+1}+\sqrt n}=\frac 1{\sqrt {n+1}+\sqrt n}$
$\sqrt n-\sqrt {n-1}=\frac {(\sqrt n-\sqrt {n-1})(\sqrt n+\sqrt {n-1})}{\sqrt n+\sqrt {n-1}}=\frac 1{\sqrt n+\sqrt {n-1}}$
$∵\sqrt {n+1}+\sqrt n>\sqrt n+\sqrt {n-1}$
$∴\frac 1{\sqrt {n+1}+\sqrt n}<\frac 1{\sqrt n+\sqrt {n-1}}$
$∴\sqrt {n+1}-\sqrt n<\sqrt n-\sqrt {n-1}$