电子课本网 第41页

第41页

信息发布者:
D
$(-2,0)$
$(2,0)$
$(t,3t)$
解:
(2)①$\because$函数图象经过点$(1,-6),$
$\therefore -6=-1 - 1 + c,$
移项可得$c=-6 + 1 + 1=-4。$
$\therefore y=-x^{2}-x - 4。$
设函数图象上的“三倍点”坐标为$(t,3t)。$
$\therefore 3t=-t^{2}-t - 4,$
移项得$t^{2}+4t + 4 = 0,$
根据完全平方公式$(a + b)^2=a^{2}+2ab + b^{2},$这里$a=t,$$b = 2,$则$(t + 2)^{2}=0,$
解得$t_{1}=t_{2}=-2。$
$\therefore$函数$y=-x^{2}-x - 4$图象上的“三倍点”坐标为$(-2,-6)。$
②$\because y=-x^{2}-x - 4=-(x+\frac{1}{2})^{2}-\frac{15}{4},$且$-3\leqslant x\leqslant1,$
$\therefore$当$x = -\frac{1}{2}$时,$y$取最大值,即$M = -\frac{15}{4}。$
又$\because$当$x = -3$时,$y=-(-3)^{2}-(-3)-4=-9 + 3 - 4=-10;$
当$x = 1$时,$y=-1 - 1 - 4=-6,$
$\therefore N = -10。$
$\therefore M - N=-\frac{15}{4}-(-10)=-\frac{15}{4}+10=\frac{-15 + 40}{4}=\frac{25}{4}。$
解:
(1)由题意,可设此抛物线对应的函数解析式为$y = a(x + 1)^{2}+c。$
将$A(-3,0),$$B(0,3)$代入,得$\begin{cases}4a + c = 0\\a + c = 3\end{cases},$
用$4a + c = 0$减去$a + c = 3$可得:
$(4a + c)-(a + c)=0 - 3,$
$4a + c - a - c=-3,$
$3a=-3,$解得$a = -1。$
把$a = -1$代入$a + c = 3,$得$-1 + c = 3,$解得$c = 4。$
$\therefore$此抛物线对应的函数解析式为$y = -(x + 1)^{2}+4=-x^{2}-2x + 3。$
(2)设直线$AB$对应的函数解析式为$y = kx + b。$
将$A(-3,0),$$B(0,3)$代入,得$\begin{cases}-3k + b = 0\\b = 3\end{cases},$
把$b = 3$代入$-3k + b = 0,$得$-3k+3 = 0,$
移项可得$3k = 3,$解得$k = 1。$
$\therefore y = x + 3。$
过点$P$作$PQ\perp x$轴于点$Q,$交直线$AB$于点$M。$
设点$P$的坐标为$(x,-x^{2}-2x + 3)(-3\lt x\lt0),$则点$M$的坐标为$(x,x + 3)。$
$\therefore PM=-x^{2}-2x + 3-(x + 3)=-x^{2}-3x。$
$\therefore S_{\triangle PAB}=\frac{1}{2}(-x^{2}-3x)\times3=-\frac{3}{2}(x+\frac{3}{2})^{2}+\frac{27}{8}。$
当$x = -\frac{3}{2}$时,$S_{\triangle PAB}$最大,为$\frac{27}{8},$
此时点$P$的坐标为$(-\frac{3}{2},\frac{15}{4})。$