解:
(1)由题意,可设此抛物线对应的函数解析式为$y = a(x + 1)^{2}+c。$
将$A(-3,0),$$B(0,3)$代入,得$\begin{cases}4a + c = 0\\a + c = 3\end{cases},$
用$4a + c = 0$减去$a + c = 3$可得:
$(4a + c)-(a + c)=0 - 3,$
$4a + c - a - c=-3,$
$3a=-3,$解得$a = -1。$
把$a = -1$代入$a + c = 3,$得$-1 + c = 3,$解得$c = 4。$
$\therefore$此抛物线对应的函数解析式为$y = -(x + 1)^{2}+4=-x^{2}-2x + 3。$
(2)设直线$AB$对应的函数解析式为$y = kx + b。$
将$A(-3,0),$$B(0,3)$代入,得$\begin{cases}-3k + b = 0\\b = 3\end{cases},$
把$b = 3$代入$-3k + b = 0,$得$-3k+3 = 0,$
移项可得$3k = 3,$解得$k = 1。$
$\therefore y = x + 3。$
过点$P$作$PQ\perp x$轴于点$Q,$交直线$AB$于点$M。$
设点$P$的坐标为$(x,-x^{2}-2x + 3)(-3\lt x\lt0),$则点$M$的坐标为$(x,x + 3)。$
$\therefore PM=-x^{2}-2x + 3-(x + 3)=-x^{2}-3x。$
$\therefore S_{\triangle PAB}=\frac{1}{2}(-x^{2}-3x)\times3=-\frac{3}{2}(x+\frac{3}{2})^{2}+\frac{27}{8}。$
当$x = -\frac{3}{2}$时,$S_{\triangle PAB}$最大,为$\frac{27}{8},$
此时点$P$的坐标为$(-\frac{3}{2},\frac{15}{4})。$