电子课本网 第56页

第56页

信息发布者:
D
$-\frac{5}{2}$或8
8
$\frac{9}{4}$
解:(1)在$y = -x + 3$中,令$x = 0,$则$y = 3,$令$y = 0,$则$x = 3,$
$\therefore A(3,0),$$B(0,3)。$把$A(3,0),$$B(0,3)$代入$y = -x^{2}+bx + c,$
得$\begin{cases}-9 + 3b + c = 0 \\ c = 3 \end{cases},$解得$\begin{cases}b = 2 \\ c = 3 \end{cases}。$
$\therefore$抛物线对应的函数解析式为$y = -x^{2}+2x + 3。$
(2)过点$P$作$PH\perp AB$于点$H,$过点$P$作$PM// y$轴,交$AB$于点$M。$设$P(m,-m^{2}+2m + 3)(0\lt m\lt 3),$
则$M(m,-m + 3)。$$\therefore PM = -m^{2}+2m + 3 - (-m + 3)=-m^{2}+3m。$
$\therefore S_{\triangle ABP}=\frac{1}{2}PM\cdot|x_{A}-x_{B}|=\frac{1}{2}\times(-m^{2}+3m)\times3=-\frac{3}{2}m^{2}+\frac{9}{2}m。$
$\because A(3,0),$$B(0,3),$$\therefore$易得$AB = 3\sqrt{2}。$
$\therefore S_{\triangle ABP}=\frac{1}{2}AB\cdot PH=\frac{3\sqrt{2}}{2}PH。$$\therefore\frac{3\sqrt{2}}{2}PH=-\frac{3}{2}m^{2}+\frac{9}{2}m。$
$\therefore PH = -\frac{\sqrt{2}}{2}m^{2}+\frac{3\sqrt{2}}{2}m = -\frac{\sqrt{2}}{2}(m - \frac{3}{2})^{2}+\frac{9\sqrt{2}}{8}。$
$\because -\frac{\sqrt{2}}{2}\lt0,$$\therefore$当$m = \frac{3}{2}$时,$PH$的长取得最大值,最大值为$\frac{9\sqrt{2}}{8},$
此时$-m^{2}+2m + 3=-(\frac{3}{2})^{2}+2\times\frac{3}{2}+3=\frac{15}{4}。$$\therefore$点$P$的坐标为$(\frac{3}{2},\frac{15}{4})。$
(3)$\because y = -x^{2}+2x + 3=-(x - 1)^{2}+4,$
$\therefore$抛物线$y = -x^{2}+2x + 3$的顶点的坐标为$(1,4),$对称轴是直线$x = 1,$且抛物线开口向下。
①当$2 + t\leqslant1,$即$t\leqslant - 1$时,$y = -x^{2}+2x + 3$在$x = 2 + t$时取得最大值,在$x = t$时取得最小值,
$\therefore -(2 + t)^{2}+2(2 + t)+3 - (-t^{2}+2t + 3)=8,$解得$t = - 2。$
②当$t\lt1,$$2 + t\gt1$且$1 - t\geqslant(2 + t)-1,$即$-1\lt t\leqslant0$时,
$y = -x^{2}+2x + 3$在$x = 1$时取得最大值$4,$在$x = t$时取得最小值,
$\therefore 4 - (-t^{2}+2t + 3)=8,$解得$t = 2\sqrt{2}+1$(不合题意,舍去)或$t = -2\sqrt{2}+1$(不合题意,舍去)。
③当$t\leqslant1,$$2 + t\gt1$且$1 - t\lt(2 + t)-1,$即$0\lt t\leqslant1$时,$y = -x^{2}+2x + 3$在$x = 1$时取得最大值$4,$在$x = 2 + t$时取得最小值,
$\therefore 4 - [-(2 + t)^{2}+2(2 + t)+3]=8,$解得$t = 2\sqrt{2}-1$(不合题意,舍去)或$t = -2\sqrt{2}-1$(不合题意,舍去)。
④当$t\gt1$时,$y = -x^{2}+2x + 3$在$x = t$时取得最大值,在$x = 2 + t$时取得最小值,
$\therefore -t^{2}+2t + 3 - [-(2 + t)^{2}+2(2 + t)+3]=8,$解得$t = 2。$
综上所述,$t$的值是$-2$或$2。$