解:(1)把$A(-2,0),$$B(4,0)$代入$y = ax^{2}+x + c,$得$\begin{cases}4a - 2 + c = 0 \\ 16a + 4 + c = 0 \end{cases},$
解得$\begin{cases}a = -\frac{1}{2} \\ c = 4 \end{cases}。$
$\therefore$抛物线对应的函数解析式为$y = -\frac{1}{2}x^{2}+x + 4。$
(2)联立$\begin{cases}y = -\frac{1}{2}x^{2}+x + 4 \\ y = -x - 1 \end{cases},$
即$-\frac{1}{2}x^{2}+x + 4=-x - 1,$$x^{2}-4x - 10 = 0,$
解得$\begin{cases}x = 2+\sqrt{14} \\ y = -3-\sqrt{14} \end{cases}$或$\begin{cases}x = 2-\sqrt{14} \\ y = -3+\sqrt{14} \end{cases}。$
$\because$点$D$在点$E$的右侧,$\therefore D(2+\sqrt{14},-3-\sqrt{14}),$$E(2-\sqrt{14},-3+\sqrt{14})。$
$\because M$为直线$l$上的一动点,横坐标为$t,$$\therefore M(t,-t - 1)。$
$\therefore N(t,-\frac{1}{2}t^{2}+t + 4)。$
$\therefore MN = -\frac{1}{2}t^{2}+t + 4 - (-t - 1)=-\frac{1}{2}t^{2}+2t + 5。$
$\therefore S_{\triangle NED}=\frac{1}{2}MN\cdot|x_{D}-x_{E}|=\frac{1}{2}\times(-\frac{1}{2}t^{2}+2t + 5)\times2\sqrt{14}=-\frac{\sqrt{14}}{2}(t - 2)^{2}+7\sqrt{14}。$
$\because -\frac{\sqrt{14}}{2}\lt0,$$0\lt t\lt4,$$\therefore$当$t = 2$时,$S_{\triangle NED}$最大,为$7\sqrt{14}。$
$\therefore\triangle NED$面积的最大值是$7\sqrt{14}。$