电子课本网 第57页

第57页

信息发布者:
解:(1)由题意,可得$y=(x - 10)[40-(x - 14)\times5]=-5x^{2}+160x - 1100。$
$\therefore y$关于$x$的函数解析式为$y = -5x^{2}+160x - 1100。$
(2)令$-5x^{2}+160x - 1100 = 175,$
即$5x^{2}-160x + 1275 = 0,$$x^{2}-32x + 255 = 0,$
$(x - 15)(x - 17)=0,$解得$x_{1}=15,$$x_{2}=17。$
$\therefore$销售单价应定为$15$元或$17$元。
(3)$y = -5x^{2}+160x - 1100=-5(x - 16)^{2}+180,$
$\because -5\lt0,$$\therefore$当$x\lt16$时,$y$随$x$的增大而增大。
又$\because$规定这种饮品的销售单价不得高于$20$元,
$\therefore$当$x = 16$时,$y$取得最大值,此时$y = 180。$
$\therefore$当销售单价定为$16$元时,每天的销售利润最大,最大利润是$180$元。
解:(1)把$A(-2,0),$$B(4,0)$代入$y = ax^{2}+x + c,$得$\begin{cases}4a - 2 + c = 0 \\ 16a + 4 + c = 0 \end{cases},$
解得$\begin{cases}a = -\frac{1}{2} \\ c = 4 \end{cases}。$
$\therefore$抛物线对应的函数解析式为$y = -\frac{1}{2}x^{2}+x + 4。$
(2)联立$\begin{cases}y = -\frac{1}{2}x^{2}+x + 4 \\ y = -x - 1 \end{cases},$
即$-\frac{1}{2}x^{2}+x + 4=-x - 1,$$x^{2}-4x - 10 = 0,$
解得$\begin{cases}x = 2+\sqrt{14} \\ y = -3-\sqrt{14} \end{cases}$或$\begin{cases}x = 2-\sqrt{14} \\ y = -3+\sqrt{14} \end{cases}。$
$\because$点$D$在点$E$的右侧,$\therefore D(2+\sqrt{14},-3-\sqrt{14}),$$E(2-\sqrt{14},-3+\sqrt{14})。$
$\because M$为直线$l$上的一动点,横坐标为$t,$$\therefore M(t,-t - 1)。$
$\therefore N(t,-\frac{1}{2}t^{2}+t + 4)。$
$\therefore MN = -\frac{1}{2}t^{2}+t + 4 - (-t - 1)=-\frac{1}{2}t^{2}+2t + 5。$
$\therefore S_{\triangle NED}=\frac{1}{2}MN\cdot|x_{D}-x_{E}|=\frac{1}{2}\times(-\frac{1}{2}t^{2}+2t + 5)\times2\sqrt{14}=-\frac{\sqrt{14}}{2}(t - 2)^{2}+7\sqrt{14}。$
$\because -\frac{\sqrt{14}}{2}\lt0,$$0\lt t\lt4,$$\therefore$当$t = 2$时,$S_{\triangle NED}$最大,为$7\sqrt{14}。$
$\therefore\triangle NED$面积的最大值是$7\sqrt{14}。$
解:(1)$\because$抛物线的顶点坐标为$(2,4),$$\therefore$抛物线对应的函数解析式为$y = a(x - 2)^{2}+4。$
将$C(0,2)$代入,得$2 = 4a + 4,$解得$a = -\frac{1}{2}。$
$\therefore$抛物线对应的函数解析式为$y = -\frac{1}{2}(x - 2)^{2}+4。$
(2)由$y = -\frac{1}{2}(x - 2)^{2}+4,$得抛物线的对称轴为直线$x = 2。$
把$y = 0$代入$y = -\frac{1}{2}(x - 2)^{2}+4,$得$0 = -\frac{1}{2}(x - 2)^{2}+4,$解得$x = 2 - 2\sqrt{2}$或$x = 2 + 2\sqrt{2}。$
$\therefore$点$A$的坐标为$(2 - 2\sqrt{2},0),$点$B$的坐标为$(2 + 2\sqrt{2},0)。$
如图,连接$BC,$交对称轴于点$P,$易知此时$AP + CP$最小。
设直线$BC$对应的函数解析式为$y = kx + m。$
将$B(2 + 2\sqrt{2},0),$$C(0,2)$代入,得$\begin{cases}0=(2 + 2\sqrt{2})k + m \\ 2 = m \end{cases},$解得$\begin{cases}k = 1 - \sqrt{2} \\ m = 2 \end{cases}。$
$\therefore y=(1 - \sqrt{2})x + 2。$把$x = 2$代入$y=(1 - \sqrt{2})x + 2,$得$y = 4 - 2\sqrt{2}。$
$\therefore$点$P$的坐标为$(2,4 - 2\sqrt{2})。$