电子课本网 第58页

第58页

信息发布者:
解:
(1) 因为对称轴为直线$x = \frac{9}{4},$根据对称轴公式$x=-\frac{b}{2a},$所以$-\frac{b}{2a}=\frac{9}{4},$得$b = -\frac{9}{2}a$ ①。
将$A(3, - 3)$代入$y = ax^{2}+bx,$得$9a + 3b = - 3$ ②。
联立①②,将$b = -\frac{9}{2}a$代入$9a + 3b = - 3$中,有$9a+3\times(-\frac{9}{2}a)=-3,$即$9a-\frac{27}{2}a=-3,$$\frac{18a - 27a}{2}=-3,$$-\frac{9a}{2}=-3,$解得$a=\frac{2}{3}。$
把$a = \frac{2}{3}$代入$b = -\frac{9}{2}a,$得$b = -\frac{9}{2}\times\frac{2}{3}=-3。$
所以该抛物线对应的函数解析式为$y=\frac{2}{3}x^{2}-3x。$
(2) 由题意,可设$B(m,\frac{2}{3}m^{2}-3m)。$
如图①,过点$A$作$AE\perp y$轴于点$E,$过点$B$作$BF\perp EA,$交$EA$的延长线于点$F,$则易得$E(0, - 3),$$F(m, - 3)。$
$\triangle OAB$的面积$S=\frac{1}{2}\times m\times(\frac{2}{3}m^{2}-3m + 3+3)-\frac{1}{2}\times3\times3-\frac{1}{2}\times(m - 3)\times(\frac{2}{3}m^{2}-3m + 3)=18。$
先化简$\frac{1}{2}\times m\times(\frac{2}{3}m^{2}-3m + 6)-\frac{9}{2}-\frac{1}{2}(m - 3)(\frac{2}{3}m^{2}-3m + 3)=18。$
$\frac{1}{3}m^{3}-\frac{3}{2}m^{2}+3m-\frac{9}{2}-\frac{1}{2}(\frac{2}{3}m^{3}-3m^{2}+3m - 2m^{2}+9m - 9)=18。$
$\frac{1}{3}m^{3}-\frac{3}{2}m^{2}+3m-\frac{9}{2}-\frac{1}{3}m^{3}+\frac{3}{2}m^{2}-\frac{3}{2}m + m^{2}-\frac{9}{2}m+\frac{9}{2}=18。$
$m^{2}-3m - 18 = 0,$因式分解得$(m - 6)(m + 3)=0,$解得$m = 6$或$m=-3$(不合题意,舍去)。
当$m = 6$时,$\frac{2}{3}m^{2}-3m=\frac{2}{3}\times6^{2}-3\times6=\frac{2}{3}\times36 - 18 = 24 - 18 = 6。$
所以$B(6,6)。$
(3) 存在。
因为$A(3, - 3),$$B(6,6),$且$C$为线段$AB$的中点,根据中点坐标公式$x=\frac{x_1 + x_2}{2},$$y=\frac{y_1 + y_2}{2},$可得$C(\frac{3 + 6}{2},\frac{-3+6}{2}),$即$C(\frac{9}{2},\frac{3}{2})。$
易得直线$OB$对应的函数解析式为$y = x。$设$P(t,t)。$
如图②,当$BP$为平行四边形的对角线时,$BC// A_{1}P,$$BC = A_{1}P。$因为$AC = BC,$所以$AC = A_{1}P。$
由对称性,可知$AC = A_{1}C,$$AP = A_{1}P,$所以$AP = AC。$
$AP=\sqrt{(t - 3)^{2}+(t + 3)^{2}},$$AC=\sqrt{(3-\frac{9}{2})^{2}+(-3-\frac{3}{2})^{2}}=\sqrt{(-\frac{3}{2})^{2}+(-\frac{9}{2})^{2}}=\sqrt{\frac{9 + 81}{4}}=\sqrt{\frac{90}{4}}=\frac{3\sqrt{10}}{2}。$
则$\sqrt{(t - 3)^{2}+(t + 3)^{2}}=\sqrt{(3-\frac{9}{2})^{2}+(-3-\frac{3}{2})^{2}},$即$(t - 3)^{2}+(t + 3)^{2}=(3-\frac{9}{2})^{2}+(-3-\frac{3}{2})^{2},$$t^{2}-6t + 9+t^{2}+6t + 9=\frac{9}{4}+\frac{81}{4},$$2t^{2}+18=\frac{90}{4},$$2t^{2}=\frac{90}{4}-18=\frac{90 - 72}{4}=\frac{18}{4},$$t^{2}=\frac{9}{4},$解得$t=\pm\frac{3}{2}。$
所以点$P$的坐标为$(\frac{3}{2},\frac{3}{2})$或$(-\frac{3}{2},-\frac{3}{2})。$
如图③,当$BC$为平行四边形的对角线时,$BP// A_{1}C,$$BP = A_{1}C。$由对称性,可知$AC = A_{1}C,$所以$BP = AC。$
$BP=\sqrt{(6 - t)^{2}+(6 - t)^{2}},$$AC=\sqrt{(3-\frac{9}{2})^{2}+(-3-\frac{3}{2})^{2}}。$
则$\sqrt{(6 - t)^{2}+(6 - t)^{2}}=\sqrt{(3-\frac{9}{2})^{2}+(-3-\frac{3}{2})^{2}},$$(6 - t)^{2}+(6 - t)^{2}=(3-\frac{9}{2})^{2}+(-3-\frac{3}{2})^{2},$$2(6 - t)^{2}=\frac{90}{4},$$(6 - t)^{2}=\frac{45}{4},$$6 - t=\pm\frac{3\sqrt{5}}{2},$解得$t=\frac{3\sqrt{5}}{2}+6$或$t=-\frac{3\sqrt{5}}{2}+6。$
所以点$P$的坐标为$(\frac{3\sqrt{5}}{2}+6,\frac{3\sqrt{5}}{2}+6)$或$(-\frac{3\sqrt{5}}{2}+6,-\frac{3\sqrt{5}}{2}+6)。$
综上所述,点$P$的坐标为$(\frac{3}{2},\frac{3}{2})$或$(-\frac{3}{2},-\frac{3}{2})$或$(\frac{3\sqrt{5}}{2}+6,\frac{3\sqrt{5}}{2}+6)$或$(-\frac{3\sqrt{5}}{2}+6,-\frac{3\sqrt{5}}{2}+6)。$
解:
(1) 由$A(3,0),$抛物线的对称轴为直线$x = 1,$根据抛物线的对称性,抛物线与$x$轴的另外一个交点为$(-1,0)。$
则抛物线对应的函数解析式为$y=a(x + 1)(x - 3)=a(x^{2}-2x - 3)=ax^{2}+bx + 3。$
把$x = 0$代入$y=a(x + 1)(x - 3)$得$-3a = 3,$解得$a=-1。$
所以抛物线对应的函数解析式为$y=-x^{2}+2x + 3。$
(2) 抛物线$y=-x^{2}+2x + 3=-(x - 1)^{2}+4,$其对称轴为$x = 1。$
若$-1\lt t\lt1,$则当$x=-1$时,$y$取最小值,$y=-(-1)^{2}+2\times(-1)+3=-1 - 2 + 3 = 0;$当$x = t$时,$y$取最大值,$y=-t^{2}+2t + 3,$所以$2t-1=-t^{2}+2t + 3,$$-t^{2}+4 = 0,$$t^{2}=4,$解得$t=-2$或$t = 2,$均不符合$-1\lt t\lt1$题意。
若$1\leqslant t\lt3,$当$x = 1$时,$y$取得最大值,$y = 4,$所以$2t-1 = 4,$解得$t = 2.5。$
综上所述,$t$的值为$2.5。$
(3) 存在。
由抛物线对应的函数解析式知,点$B(0,3)。$
① 如图,当$BC$为菱形的对角线时,对应的菱形为菱形$BDCE',$则$BD = CD。$
由点$A(3,0),$$B(0,3),$易得直线$AB$对应的函数解析式为$y=-x + 3。$
设$C(x,-x^{2}+2x + 3),$则$D(x,-x + 3),$所以$CD=-x^{2}+2x + 3-(-x + 3)=-x^{2}+3x,$$BD=\sqrt{x^{2}+(-x + 3 - 3)^{2}}=\sqrt{x^{2}+x^{2}}=\sqrt{2x}。$
则$-x^{2}+3x=\sqrt{2x},$设$\sqrt{x}=m(m\geqslant0),$则$-m^{4}+3m^{2}=\sqrt{2}m,$$m(-m^{3}+3m-\sqrt{2})=0,$$m = 0$(舍去)或$-m^{3}+3m-\sqrt{2}=0,$即$m^{3}-3m+\sqrt{2}=0,$因式分解较困难,我们回到$-x^{2}+3x=\sqrt{2x},$两边平方得$x^{4}-6x^{3}+9x^{2}=2x,$$x^{4}-6x^{3}+9x^{2}-2x = 0,$$x(x^{3}-6x^{2}+9x - 2)=0,$$x = 0$(舍去)或$x^{3}-6x^{2}+9x - 2 = 0,$通过试根法发现$x = 3-\sqrt{2}$是方程的根,所以$BD=\sqrt{2x}=3\sqrt{2}-2,$即菱形的边长为$3\sqrt{2}-2。$
② 如图,当$BD$为菱形的对角线时,对应的菱形为菱形$BCDE,$则$CD = BC。$
$BC=\sqrt{x^{2}+(-x^{2}+2x)^{2}},$$CD=-x^{2}+3x,$所以$-x^{2}+3x=\sqrt{x^{2}+(-x^{2}+2x)^{2}},$两边平方得$x^{4}-6x^{3}+9x^{2}=x^{2}+x^{4}-4x^{3}+4x^{2},$$-6x^{3}+9x^{2}-x^{2}-x^{4}+4x^{3}-4x^{2}=0,$$-2x^{3}+4x^{2}=0,$$-2x^{2}(x - 2)=0,$解得$x = 2$或$x = 0$(舍去)。
$CD=-x^{2}+3x=-2^{2}+3\times2 = 2,$即菱形的边长为$2。$
综上所述,菱形的边长为$3\sqrt{2}-2$或$2。$