(1)证明:由题意,得$BP = BQ,$$\angle PBQ=\angle CBP+\angle CBQ = 90^{\circ}。$
因为四边形$ABCD$是正方形,所以$AB = CB,$$\angle ABC=\angle ABP+\angle CBP = 90^{\circ}。$
所以$\angle ABP=\angle CBQ。$
在$\triangle ABP$和$\triangle CBQ$中,
$\begin{cases}AB = CB\\\angle ABP=\angle CBQ\\BP = BQ\end{cases},$
所以$\triangle ABP\cong\triangle CBQ(SAS)。$所以$AP = CQ。$
(2)解:由(1),知$\angle ABC = 90^{\circ},$$AB = CB。$
在$Rt\triangle ABC$中,$AC=\sqrt{AB^{2}+BC^{2}}=\sqrt{4^{2}+4^{2}} = 4\sqrt{2}。$
又因为$PC = 3AP,$所以$AC=AP + PC=AP + 3AP = 4AP = 4\sqrt{2}。$
所以$AP=\sqrt{2}。$所以$PC = 3AP = 3\sqrt{2}。$$CQ = AP=\sqrt{2}。$
因为$\triangle ABP\cong\triangle CBQ,$所以$\angle PAB=\angle QCB。$
因为$\angle ABC = 90^{\circ},$所以$\angle PAB+\angle ACB = 90^{\circ}。$
所以$\angle QCB+\angle ACB=\angle PCQ = 90^{\circ}。$
所以$PQ=\sqrt{PC^{2}+CQ^{2}}=\sqrt{(3\sqrt{2})^{2}+(\sqrt{2})^{2}} = 2\sqrt{5}。$